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A NON-ITERATIVE APPROACH.
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ABSTRACT: In this paper we consider the problem of estimating the
sinusoidal frequencies by a non-iterative technique. We
establish the strong consistency of the proposed estimate. We
further propose a one .step modification of the non-iterative
technique. It is observed in the simulation study that the
proposed method performs better than the existing non-iterative
techniques for reasonably small sample sizes. The mean squared
errors of the proposed method reaches the Cramer-Rao lower bound
in many situations. We also propose three different kinds of
confidence intervals and compare their performances by

simulation.
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1. INTRODUCTION

We consider the following time series model;

M

Y, =u§1[ A Cos(wKt) + B, SLn(wKt) ] + €, (1.1)
Here yt's are observed at equidistant time points, for t = 1, .
., N. (“’1' . ., w“), (Al, . e, AH) and (B1' . ., Bn) are the

unknown parameters, w ’s are distinct real numbers 1lying in
(0,m). M, the number of signals is assumed to be known apriori.

(ct) is a sequence of real valued i.i.d. random variables with

E(et) = 0 and V(ct) = 02 (1.2)
The problem is to estimate the unknown parameters W A and
Bk for k =1, . . , M and az. The estimation of the parameters

of the model (1.1) is a fundamental problem in signal processing
(Kay and Marple; 1981) and time series analysis. The asymptotic
theory of the least squares estimates (LSE) for this model has a
long history. Whittle (1951, 1953) obtained some of the earliest
results. More recent results are by Hasan (1982), Hannan (1973)
and Walker (1971). They formalized and extended Whittle'’s
results. Walker (1971) introduced the concept of an approximate
LSE for the model (1.1). He first estimated the frequencies by
finding the maximum of the periodogram and then computing the
estimates of the amplitudes. The approximate LSE were shown to
be strongly consistent and the asymptotic normality of the
estimates were also obtained. It may be noted that althbugh

asymptotically the approximate LSE estimates are equivalent to




the exact LSE, for finite sample sizes the performance of the
exact LSE are better than the approximate ones in terms of lower
mean squared errors (Kundu and Mitra; 1994). Kundu (1993a) was
the first one to give a direct proof of consistency of the exact
LSE for the model (1.1) under the assumption of normality of the
error random variables, the consistency and asymptotic normality
for general error random variables can be found in (Kundu and
Mitra, 1994).

It may be noted that although the 1least squares estimates
are the most desired estimates, the problem of finding the
estimates is well known to be numerically difficult. Rice and
Rosenblatt (1988) discussed the computational complexities
involved to obtain the LSE. The model (1.1) being a nonlinear
one, to obtain the LSE some sort of iterative search procedure
must be employed. Typically, search methods start from an
initial guess value and then proceed by a sequence of
Gauss-Newton steps. For this nonlinear least squares problem it
turns out that there are many local minima with a separation in
frequency of about N~ ' which makes the stationary point to which
the iterative scheme converges extremely sensitive to the
starting values. This problem gets worse as the sample size
increases. It is also observed (Rice and Rosenblatt;1988) that
unless the frequency is resolved at the first step with order

o(N~!

), the failure to converge to the global minimum may give a
very poor estimate of the amplitude. The problem becomes

especially severe if one is estimating the parameters of several




harmonic components simultaneously, since in that situation the
iteration is taking place in a higher dimensional space with many
local minima. The method of Walker (1971) for estimating the
initial values by finding the maximum of the periodogram turns
out to have drawbacks. A bias can arise for moderate sample
sizes that 1is appreciable compared to the standard deviation
suggested by asymptotic theory (Rice and Rosenblatt;1988). The
initial wvalues provided to the search algorithms are thus
critical. A direct search of the periodogram at a fine grid of
points substantially finer than that given by the frequencies
2ni/N used by fast Fourier transform is appealing, but
unfortunately has its drawbacks as well. Due to the difficulties
in obtaining the 1least squares estimates several non-iterative
techniques have been proposed in the recent past. Among the
non-iterative methods for estimating the frequencies of the model
(1.1) in the undamped exponential model form, the best known is
the TLS-ESPRIT method of Roy and Kailath (1989). Recently,
another non-iterative technique have been proposed by Quinn
(1994), this involves the computation of three Fourier
components; the Fourier component at the maximiser of the
periodogram and at the two adjacent Fourier frequencies.

In this article, we propose a new non-iterative method for
estimating the frequencies of the model (1.1). The proposed
method provides better frequency estimates (in terms of lower
mean squared errors) than the existing non-iterative techniques

for reasonably small sample sizes. The mean squared errors of




the proposed method reaches the Cramer-Rao lower bound in many
situations in the cases considered in our simulation study. The
proposed estimate can also be used as an efficient initial
value for any optimization algorithm to obtain the least squares
estimates. First we transform the model (1.1) to an undamped
superimposed exponential signals model and then use extended
order modelling and singular value decomposition technique to
estimate the frequencies. We call the new estimates, the Noise
Space Decomposition (NSD) estimates. Once the frequencies are
estimated by the NSD method, the linear parameters can then be
obtained using separable regression technique of Richards (1961).
The proposed method 1is shown to give strongly consistent
estimates. Since the proposed method is strongly consistent, a
further one step modified estimate is also proposed which already
have the same asymptotic properties as the exact LSE. Some
confidence intervals of the frequencies are also proposed.

The organization of the paper is as follows; in Section 2 we
describe the estimation procedure, consistency results are
provided in Section 3. Modified estimates are proposed in Section
4, different confidence intervals are discussed in Section 5.
Some Monte Carlo simulations study is presented in Section 6 and

finally we draw conclusions in section 7.

2. ESTIMATION PROCEDURE
Observe that the model (1.1) can be written as a linear

combination of 2M complex exponential terms in the following way;




M M

y, = ¥ Cr exp (i wrt) + 3 Dr exp(-1 wrt) + e t=1, . ., N
k=1 k=1
(2.1)
wherec=l[A—iB)andD=l[A+iBJandi=\/-'.
r 2 r r r 2 r r

It is well known (Prony; 1795, see Kundu; 1993b also) that
in the noiseless case there exists an unique vector C =(c1, .« o g

c ) such that:;
2M+1
2M+1

Z ck yhk =0
k=1
for all t=0, . . , N=-2M-1, ICI = 1 and c > 0. (2.2)
The unknown constants (ci, . e, c2m1) are such that the roots
of the polynomial equation
2M 2H-1
clz + czz + . .+ Corey = 0 (2.3)
are of the form Ak = exp(* in). Thus if we can estimate C, we
can estimate the unknown frequencies wk's using (2.3). Now

observe that (Kahn et. al; 1993), the condition that the roots be

purely imaginary means (2.3) must factorize in the form
M

2 2
n, 1 [ AS - (2-nK)A + 1 ] (2.4)
k=1
This implies that S = Copeark’ k =1, . . , 2M+1 and the roots
. 2
are Ak = exp(* 1wK), where 2 - nK = 2 Cos(wK).

Consider the following N-L x L+1 data matrix

Y, - - - Y

L+1
A = o e e e (2.5)

for any positive integer L such that 2M = L = N-2M.

Let’s denote by T the L+l x L+1 matrix given by




1 *
T=g5AA (2.6)

where ’*’ denotes the conjugate transpose of a matrix or a
vector. Observe that in the noiseless case the matrix T has rank
2M. Let the singular value decomposition of T (see Rao; pp. 42,

1973) be as follows:

L+t ,

M 2 A A%
T = 20} v (2.7)
1 =1
where a? > oz > .. > of“ are the ordered eigenvalues of T and
U is the normalized eigenvector corresponding to ol The
subspace generated by { 61' . ., GaJ is denoted by S and
that of { Uper?t * + ULn} is denoted by N. We call S the

signal subspace and N the noise subspace. Let Bl be any basis of

the noise subspace N. We write

b .« « « . b
1,1 1.L+1-2M
B, = (2.8)
b . « b
| TLet,n Lel,Le1-2M
Observe that because of (2.2), in the noiseless situation

there exists an unique basis of N which has the following form

F c1 0 . e 0
c 0
. 1
(o]
CH (o] 0
M+l M
CH cml C
Bz = . C:M 1 (209)
C . .
! (o]
°G
0 c
M
0 0 . C




A

Now observe that B, = [ U ;, - . , U ] forms a basis of
1 2M+1 L+1
the estimated noise space. Our main aim is to obtain a basis of

N which has the form similar to (2.9) and to estimate C from

these.
Let’s partition the matrix B1 as follows;
T _ T . T . T
B1 = [ B11 : 312 : 313 ] (2.10)
Lel1-2M X L+1 L+l -2 MxK L+1-2Mx2H+1 L+l1-2MxL-K-2M
for k=0,1, . . , L-2M. Now consider the matrix
T . T
[ Bip ¢ Bis ]

L+l -2 MxK L+1-2MxL-K-2M
Since the above 1is a random matrix, it is of rank L-2M.
Therefore we can conclude that there exists an unique L+1-2M
vector xn4= 0, such that
—
T
Bi1
KxL+ 1 -2M
T
Bis

L-K-2Mx L +1-2M

X =0 (2.11)

Consider the 2M+1 vector CK”, where

o) T3 U ~ _
c - (CKH,I' * Sa,amn) T Bra X (2.12)
By properly normalizing we can make éxﬂ , > 0 and 1 = 1 for

k=90, . . , L=-2M. Therefore we can conclude that there exist

vectors Xl, . e xumqn such that




e 0 0
1,1 "
c 0
2,1 .
R 0
By [ Xy X p-oMe1 ] i, amb1 A c (2.13)
L=2M+1,1
0 2,2M+1
0 0 .
0 0 CL-2H+1,2H+1
where 8k1 > 0 and Ic®t = 1 for k=1, . . , L+1-2M. Observe that
in the noiseless situation
cl=c®=..=c"M _¢ (2.14)
Let J be the L+1 x L+1 exchange matrix given by
0 1
oO. .10
J = (2.15)
1 0. . .0
_ -
Consider the matrix T given by
T=3JT3J (2.16)

Observe that the eigenvalues of T and T are same and if x is an

eigenvector of T corresponding to the eigenvalue A, i.e.

TXx=AXx =>JTJIIx=A2Tx =T (Ix)=2ar (IX)
then J x is an eigenvector for T corresponding to A. Let’s
denote by N the subspace generated by { Jﬁaux’ . e Jﬁu1}' we

call N the noise space of T.
It can be easily seen that in the noiseless situation there

exists an unique basis of the noise space of T of the form




0 0 . o]

1

0 o]

0 c !t

1 M+l

= cl cH
B2 = é . (2.17)

c ct ¢

M M+l
cHol cH 0
cN L] L]
L] c1
% o0 ... 0

In this case also our aim is to obtain the basis of the

estimated noise space N, i.e.

A

Bl = [ JUa“I: . . e JUul ] (2.18)
to the form similar to (2.17). Proceeding exactly as in the case
of N, we reduce the basis to the following form

o —

0 0 c*
. . ¢ CL-2H+1J
. 0 L] .
A* M
0 (o] A%
a* 2.1 cL-2M+1,2H+1
G = 1,1 : ) 0 (2.19)
: 8* .
A% 02.2n+1
c1.zu+1 ’ y 0 ]

h that f hct = (& o* k=1 L-2M+1;
suc a or eac « = (qu' . .y, ckgun)’ =1, . . , ;
A AR .

., > 0 and e = 1. As in the case of N, in the noiseless
situation

A% A% A%

¢, =¢c,=..=c¢c _ =C (2.20)

It is further observed that G = J Bl[Xf.JX

10




Ak
? 9 * cL-2H+1J
. 0 T
AR *
0 c "k
A% 2.1 cL-2H+1,2H+1
(o] .
1,1 . . 0
. A% .
. c
Ak 2, 2K+1
c 0 . 0
1,2M+1 _
— _
(o] . 0
1,1 a
. c . 0
. 2,1 .
R . 0
(o4 . A
1, 28+1 A (o}
= J ' —-2M+1,1 .21
0 2.2n+1.L (2 )
0] 0 .
0 0 &
cL-2H+1,2H+1

Now observe that since (2.14) and (2.20) are true, it is

A AdR
quite natural that any one of the C for k=1, . . , L-2M+l or C‘
for k = 1, . . , L-2M+1 can be used to estimate the
frequencies. In fact the use of 6:*= %(é‘ + é:); k=1, . .

,L-2M+1 always ensure that the estimated coefficients of the
polynomial prediction equation (2.3) satisfy the symmetry

constraint and roots of

Akk . oy Adk  oM-q A d% k
(o] Z + C + . . + =
k,1 k.ZZ ck.znq 0 (2.22)

are of the form exp(ti&K), for k =1, . . , L-2M+1. We use all

Ak
c /i k=1, . . , L-2M+l to estimate w. We take the average of

K
Adk%k A

all CK ‘s and use (2.3) to get the final estimate w of w. We

call the resulting estimate &“D, the Noise Space Decomposition

(NSD) estimates.

11




3. CONSISTENCY RESULTS
In this section we prove the following result,
Theorem 1: Under the assumptions of the model (1.1), the estimate
@ of w obtained by the method described in section 2 is strongly

consistent, i.e.
a.s.

€ >

NSD W (3.1)
To prove theorem 1, we need the following lemmas
Lemma 1: Let P = ((p”)) and Q = ((qU)) are two Hermitian m x m

matrices with spectral decompositions

*

d
i
o
o

o]
[+ 2]
-

v
(o2}
1

3

(3.2)

*

o]
| _
ntMMe upe

[T

AZ A= (.oeeee T A
1 2

__>’
2
£Q

-

where 6"5 and Al's are eigen values of P and Q respectively , P,

and q, are orthogonal normalized eigenvalues associated with 8‘

and A respectively for i=1,...,m. Further assume that
An L EEEERERE = An = Ah’ no=0<nl< . <ns= p ¢+ h=i, .. ,s
h*1 h
Ag> Ay> o > Al
and that [pw-qml < «, i,k =1, .. ,m

then there is a constant M independent of a such that

n n
h * h *
() ¥ p,P =1 49, 9 * ct (3.3)
t=n 1=n
h=1 h=1
. (h) _ (h) (h)
with C ((Clk )), |Clk | = Ma

12




Proof: It follows from Von-Neumann’s (1937) inequality, see also
Bai, Miao and Rao (1991).

Lemma 2:

*
§ Aa=co21  +a%pa®*, o{ 2og logh ] a.s  (3.4)

. 2
where D = dlag { ICII; . . ‘Ilcill IDfll L "IDil } and
2HX2H

-iw -iw iw iw
(L _

L+1 x M e—l(L+1)w1‘ e-1(L+1)wH e1(L+1)u1 ' el(L+1)wH

Proof : We have

y R A |
FAA=T =5 ((t£)) (3.5)

with the following renaming of the parameters of (2.2) as

{ c, for i=1, . . , M

@ = (3.6)
Dh“ for i=M+1, . ., 2M
W, for i=1, . . , M

Bl= (3.7)
W for i=M+1, . . ,2M

N-L-1
1 _1 -
N “ix N lgo Yiey Yt
1 N=L -1 ,2NM _ - 2M
= 3 120 [uglauexp(-lﬁu(l-i-l)) + CH-I] [ug‘auexp(lﬁu(l+k)) + €l+k]

]
Z[ -

N=L~-1 2M 2 _
[ X la,|Pexp(ig (k1)) + T &, a exp(i (B, (1+k) -, (1+1)))
us=1i u*v

2N 2M

+ cH_k[ }_‘_lauexp(-iﬁu(l+i))] + Em[ Eauexp(iﬁu(l-&k)) + °x+u]

u=

13




+ Cl+181+k ]
= Rl + RZ + R3 + R4 + R5 (say) (3.8)
Observe that R, = O (%) and R, = o[ 1—°3Nl—°9§ ] a.s and
R4 = 0( v Iggﬁiegﬁ ] a.s (see Petrove (1975, page 375) and by

the law of iterative logarithm of M dependent sequence

N

===3 it ik

5 C e
24 O[ logNlogN ] if i=k
this proves lemma 2.

Lemma 3. Let gn(x) be a sequence of polynomials of degree k, with

r), ceeen, x:" for each n. Let g(x) be a polynomial of

roots x
degree Q , with roots Xt eeeeeny X s Q = k. 1If gn(x) — g(x)
as n — o then with proper rearrangement the roots of gn(x) ‘
gr) converge to the roots of g(x), ie to xr

Proof : See Bai et al (1986)

Proof of Theorem 1: From Lemma 2 it follows that:

T 28 O_ZIL+1 + Q(1.) D Q(l.)* = S
-~ *
and LN crzlu1 +J3 oY pab* 3= s,

Observe that the eigen values of S are of the form

_ _ _ 2
Al = Aa Z . z Azn > A2H+1- e AL+1 =0 (3.9)
since a* p WV is of rank 2M. Let the singular value
decomposition of S be
L+1 *
S= L A s;s; (3.10)

1 =1

where s; is the normalized eigenvector corresponding to the




eigenvalue Al and si's are orthogonal to each other

using lemma 1

L+1 .~k

A

L+1

dA.S

ZUUi-—> T s

1=2M+1

(3.10)implies that the vector space generated by {G
converges to the vector space generated by {

Now the former one has a unique basis of the form

I 0
1,1 a
. ca1
c1.zu+1 A
0 2,2M4+1
0 0
0 0
A Ak _ Ak
with c ., > 0 and I C*Il = 1 where C
’
the form
[ ¢
1
c2 ) 0
é 2 0
2M+1 C
0 2M+ 1 !
0
0 czm 1

where c1 >0 and it ¢C

{ =2M4+1

This implies that

L 4

S

15

Q>0 -0 ©

L=2M+1,1

Q> -

=1 with Cc = (c“

L=2M+1,2M+1

( ¢

- . L)

A
v
S2M+1’ L+1} .

o]
k,1’ k, 2441

Therefore

(3.11)

Lo

4

(3.12)

) for

« «, L-2M+1, whereas the later one has a unique basis of

(3.13)




¢k _a.s, ¢ for k = 1, . . ., L-2M+1 (3.14)

Similar analysis for T shows that

6; a5, ¢ for k =1, . . ., L-2M+1 (3.15)

Thus we have .

E;* 2.5, ¢ for k =1, . . ., L-2M+1 (3.16)
Therefore from Lemma 3 we can say that the roots obtained using
a;*are consistent estimators of w ‘s for all k = 1, . ., L=2M+1.

4. MODIFIED NOISE SPACE DECOMPOSITION METHOD

It may be noted that the model (1.1) 1is a nonlinear
regression model. So the least squares method should be the

preferred estimation technique at least as far as efficiency is.
concerned. It is observed that for this particular nonlinear
least squares problem there are many local minima with a
separation in frequency about N™' which makes the point of
convergence of iterative scheme extremely sensitive to the
initial values. The need for non-iterative estimation procedures
thus arise mostly from the fact that good starting values are
needed in numerical optimization of the residual sum of squares.
In some cases, for instance when the signals have to be detected
on line, the iterative least squares method might be too time
consuming. If the motivation for the use of a non-iterative
technique is the 1latter, the following improvement of the NSD
estimates can be suggested.

It is well known (Harvey; 1981, ch. 4.5) that when a regular

16




likelihood (differentiable upto third order) is maximized through
the Newton-Raphson, scoring or a related algorithm, the estimates
obtained after one single round of iteration already have the
same asymptotic properties as the exact least squares estimates.
This holds, if the starting values have been chosen VN -
consistently. Now, since the NSD method is strongly consistent
we combine the NSD method with one single round of scoring
algorithm. This way the asymptotic error variances should (in
theory, at 1least) coincide with the asymptotic variance
irrespective of the distributional form of the error term. We
call the resulting estimates obtained after one round of
iteration with NSD as starting values, the Modified Noise Space
Decomposition (MNSD) estimates.
One way of implementing this idea would be the following:

Let us write the model (1.1) in the vector form

Y =AW a + ¢ (4.1)
T
where A(w) = [ Al(w) Az(w) e AN(w) ] with Ak(w) = [ Cos(wgq
T
Sin(unk) o e e . Cos(wnk) Sin(wﬂk) ] , o = [ A1 B1 e AH Bu ],
T T
Y = [Y1 . e . yN] and £ = [c1 .« e e cN] .

Now consider the concentrated residual sum of squares
* * * 1w
Y [I - PA(w)} Y =Y [I - A(w)(A (w)A(w)] A (w)] Y (4.2)

To obtain the least squares estimates first (4.2) can be
minimized with respect to w and then the estimate of a can be

obtained using linear regression technique. For details see

17




Kundu (1993b). We obtain the MNSD estimates after one step

minimization of (4.2) using NSD estimates as starting values.

5. CONFIDENCE INTERVALS

In this section we propose different confidence intervals
for the frequencies. We propose an asymptotic confidence
interval and two bootstrap confidence intervals.

5a. Asymptotic Confidence intervals

In this subsection we discuss the confidence intervals for
the frequencies based on their asymptotic distribution. It may
be observed that (Kundu and Mitra; 1994) that the asymptotic
distribution of the exact LSE of the frequencies is of the

following form

-3/2¢ . 2
N [wk - W :! - N[ 0, -L:GT- ] (5a.1)
(A +B )

which eventually coincides with the distribution of the
approximate LSE proposed by Walker (1971).
Based on (5a.l1), the following 100(1-a)% confidence interval

for W, is proposed by

24 &

w=T [ > w+ T -
[ k a/2 NB(Ai"'Bi) 2

2 ]1/2 [
1
k a/2 NJ(A +BZ)
kK Tk

~2 172
—24 0 ] ] (5a.2)
Since the MNSD estimates proposed in section 4 has the same
asymptotic properties as the exact LSE, we take the MNSD
estimates as W, in (5a.2).
Sb. Percentile Bootstrap Confidence intervals

In this subsection we construct the percentile bootstrap
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confidence intervals for wk's using the method suggested by Efron

(1982).
Suppose we have a sample of size N;: Yoo o+ o o0 Y, coming
from (1.1). We propose the following algorithm to obtain the

confidence intervals

(1) Estimate (W, . . . w,) from Yoo o o e Yy using MNSD
method.
(2) Estimate €= yl—§1, i=1, . . , N, where
A H A A A A
yl = k§1[ Ak Cos(wKt) + BK Sln(wKt) ].
(3) Draw a random sample of size N from { 31' . e ey, EN } with
replacement, let it be { EB, . ..y, EB } .
1 N

(4) Obtain bootstrap sample y:,- . e ., y:; where

* A A
=y + £

Y, . B ! i=1, . . , N.
i
. * .
(5) Estimate (wx, o e ey wH) from Yoo o o oy y: using MNSD
method. Denote it by w: , K=1, . ., M.

(6) Repeat the steps (3) to (5) NBOOT times.
/) Order these NBOOT estimates corresponding to each W -

/) Estimate Lg (®/2) by NBOOT «/2th order statistics and

ﬁpa(a/z) by NBOOT (1-a/2)th order statistics for each set of
w*k and claim that (ﬁpa(a/z), U,(a/2)) to be the 100(l-a)$

percentile bootstrap confidence interval for W -
5c. Bootstrap-t Confidence intervals

In this subsection we construct the bootstrap-t confidence
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intervals based on the method suggested by Hall (1988).

We propose the following algorithm for computing the

bootstrap-t confidence intervals,

(1) From the original sample AR A estimate (wl, « e ey
wn) by MNSD method and then (A1' . e, A“) and (B1’ .y BJ
by separable regression technique and estimate 02 by

N 2
A2 _ 1 A
T =N Z[ yl-yl]
1=1

(2) Estimate the errors by E‘= yl-;ri, i=1, . . , N.

(3) Draw a random sample of size N from { 21, e e, EN } with
replacement, let it be { EB, S éa } .

1 N
(4) Obtain bootstrap sample y:, . e e, y:; where
* A A .
yl = yl + eB , 1=1, . . , N,
1

(5) Estimate (W, - « ., wn) from y:, e e ey, y: using MNSD
method, denote it by G: and also the estimate of 02 as Gﬁ.

(6) Obtain for each W i=1, . ., M

VT (0 -0 )
k k
Tl = -
o
B
(7) Repeat the steps (3) to (6) NBOOT times.
(8) For each w,, order the NBOOT number of T 's. Estimate

f.m(a/z) by o+ VN ¢ [ NBOOT o/2 tn order statistics from
Tl's ] and GTB(a/Z) by 6l+ v N & [ NBOOT (l1l-a/2) th order
statistics from T ‘s ] Now claim that (L_(a/2), U_(a/2))

to be the 100(1l-a)% bootstrap-t confidence interval for W, .
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6. MONTE CARLO SIMULATIONS

We have performed Monte Carlo simulation study to ascertain
the behavior of NSD and MNSD estimates and to compare it’s
performance with the best known non-iterative techniques for
moderate sample sizes and different ranges of the error variances
02. All these simulations have been done on the HP-9000 computer
at the Indian Institute of Technology Kanpur, using the IMSL
random deviate generator.

We consider the following model of one harmonic component;

Y, = 1.5 Cos(wt) + 1.5 Sin(wt) + €, t=1, . ., 25 (6.1)

The error random variable (e,) is white and Gaussian with
variances 02. The frequency w is taken to be 0.25m, 0.50m, 0.75nm
in three different sets of simulations. For each w, 100
independent trials using different £, sequences are performed.
The variance of the error random variables is varied from 0.01 to
1.5. In each case we computed (wl,..., wH) by NSD, MNSD,
TLS-ESPRIT and Quinn‘’s (1994) method. For each w, we computed
the average estimates and the mean squared errors (MSE) over 100
replications and also the corresponding Cramer-Rao lower bound
(CRLB) .

It is observed that the performance of the NSD and
TLS-ESPRIT estimates change with the different values of L. We
observed that the MSE starts decreasing as L increases for both
the methods and for N=25, the best performance (min MSE) for the

NSD occurs at L=15 (= %N) and at L=12 (= %N) for TLS-ESPRIT. The
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performance of the MNSD estimates does not seem to be much
affected with the variation of L. We report the performances of
MNSD, Quinn’s method (1994) and the best performance of the NSD
and TLS-ESPRIT along with their CRLB in Table 1.

We also performed a simulation study to investigate the
performance of the different confidence intervals discussed in
section 5 with respect to their average length and coverage
probabilities. We consider the simulation model (6.1) with €,
white and Gaussian having error variance 02. Results are
obtained for w = 0.25m, 0.50m and 0.75m. For each w, simulations
were performed for 02 = 0.01, 0.05 and 0.1. Average length of
the confidence intervals (with nominal level 0.90) and the
corresponding coverage probabilities over 100 simulations are

reported for all the methods in table 2. The bootstrapping

number NBOOT is taken as 100 for both the bootstrap methods.

7. CONCLUSIONS

In this article, we propose a new non-iterative method for
estimating the frequencies of the model (1.1) when the number of
frequencies is known apriori. If the number of harmonic
components is unknown, then we can first estimate the number of
frequencies by the method of Kundu (1992) and then use the
proposed method to estimate the frequencies. First we transform
the model (1.1) to an undamped superimposed exponential signals
model, then use extended order modelling and decompose the noise

space by singular value decomposition technique. It is further
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proved that the proposed non-iterative technique yields estimates
that are strongly consistent.

Simulation results show very satisfactory performance of the
proposed method. The proposed method performs better than the
best known non-iterative techniques 1like TLS-ESPRIT (Roy and
Kailath; 1989) and Quinn‘’s method (1994) even for reasonably
small sample sizes and at all 02 levels. The performance of MNSD
almost attains the CRLB in the cases considered.

The choice of L obviously affects the performance of the NSD
estimates. Clearly L should be at least M+1, but the natural
question is why it should be larger than that? Although no
theoretical justifications have been given in the literature, but
it is observed that extended order modelling always helps to
improve the performance of the estimators. Some heuristic
justifications can be found in Tufts and Kumaresan (1982) . It
seems more theoretical work is needed in this direction. Here we
have observed that as L increases the MSE starts decreasing for
NSD. It reaches a minimum at L=15 (= %N), when the sample size
is 25. The performance of the MNSD estimates does not seem to be
affected much with variation in L.

Among the three confidence intervals for the frequencies
discussed in section 5, the bootstrap-t confidence intervals
gives the highest coverage probabilities although the average
length of these intervals is marginally larger than the other
two. It is also observed that the asymptotic confidence interval

performs better than the percentile bootstrap intervals in terms
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of shorter average length and higher coverage probabilities when
w = 0.50m. But the percentile bootstrap gives higher coverage
probabilities and almost same length intervals when w = 0.25m or
0.75m as compared with the asymptotic confidence intervals. It
is further observed that all the three confidence intervals are
symmetric about the true parameter in the cases considered.
Based on the results of the simulations, we recommend to use

bootstrap-t method for finding confidence intervals.

The research of the authors is partially supported by the Army Research Office
under the Grant DAAH04-96-1-0082.
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idavuie |

5 w = ,251 W = ,.50m w = .75n
o
CRLB 0.785398 1.570796 2.356194
3.94548E-06 3.41880E-06 3.03997E-06
NSD 0.785401 1.570874 2.356232
4.26988E-06 4.28355E-06 4.,24039E-06
0.01| MNSD 0.785388 1.570840 2.356200
3.47565E-06 3.55599E-06 3.18853E-06
TLS~-ESP 0.785362 1.570867 2.356207
4.31333E-06 3.74651E-06 3.69340E-06
QUINN 0.780761 1.571113 2.366536
2.91065E-05 4.54485E-06 1.10624E-04
CRLB 0.785398 1.570796 2.356194
7.89097E-06 6.83761E-06 6.07997E-06
NSD 0.785426 1.570906 2.356228
8.53331E-06 8.57883E-06 8.50615E-06
0.02| MNSD 0.785370 1.570855 2.356217
6.93120E-06 7.12682E-06 6.39456E-06
TLS-ESP 0.785353 1.570896 2.356210
8.64388E-06 7.50853E-06 7.41247E-06
QUINN 0.780733 1.571124 2.366513
3.70177E-05 9.01441E-06 1.13813E-04
CRLB 0.785398 1.570796 2.356194
1.18364E-05 1.02564E-05 9.11991E~06
NSD 0.785455 1.570932 2.356218
1.27951E-05 1.28827E-05 1.27903E-05
0.03] MNSD 0.785352 1.570865 2.356235
1.03701E-05 1.07106E-05 9.61498E-06
TLS-ESP 0.785348 1.570917 2.356211
1.29883E-05 1.12857E-05 1.11506E-05
QUINN 0.780704 1.571126 2.366489
4,49808E-05 1.34930E-05 1.17011E-04




Table 1 (continued)

02 w = ,2571 w = ,50m w = ,75mn
CRLB 0.785398 1.570796 2.356194
1.57819E-05 1.36752E-05 1.21598E-05
NSD 0.785486 1.570953 2.356203
1.70573E-05 1.71940E-05 1.70906E-05
0.04| MNSD 0.785331 1.570873 2.356254
1.38102E-05 1.43069E-05 1.28486E-05
TLS-ESP 0.785344 1.570935 2.356212
1.73457E-05 1.50783E-05 1.49056E-05
QUINN 0.780674 1.571122 2.366466
5.29854E-05 1.79825E-05 1.20221E-04
CRLB 0.785398 1.57079e6 2.356194
1.97274E-05 1.70940E-05 1.51998E-05
NSD 0.785519 1.570972 2.356185
2.13213E-05 2.15121E-05 2.14056E-05
0.05] MNSD 0.785313 1.570880 2.356274
1.72385E-05 1.79152E-05 1.60951E-05
TLS-ESP 0.785343 1.570951 2.356213
2.17155E-05 1.88861E-05 1.86763E-05
QUINN 0.780644 1.571116 2.366442
6.10271E-05 2.24838E-05 1.23440E-04
CRLB 0.785398 1.570796 2.356194
1.97274E-04 1.70940E-04 1.51998E~04
NSD 0.787414 1.571413 2.354701
2.24305E-04 2.20710E-04 2.28583E-04
0.5 MNSD 0.784367 1.570889 2.357353
1.70489E-04 1.92013E-04 1.75043E-04
TLS-ESP 0.785474 1.571154 2.356044
2.31914E-04 2.10385E-04 2.04808E-04
QUINN 0.779592 1.568753 2.364463
5.06561E-04 3.31991E-04 3.94745E-04




Table 1 (continued)

w = ,25nn w = ,50m1 w = .75
CRLB 0.785398 1.570796 2.356194
3.94548E-04 3.41880E-04 3.03997E-04
NSD 0.790650 1.571914 2.351608
5.39997E-04 4.52201E~-04 5.40340E-04
MNSD 0.783273 1.570815 2.358698
3.47738E-04 4.13789E-04 3.88778E-04
TLS-ESP 0.777414 1.570930 2.356122
6.67020E-03 5.15182E-04 4.89108E-04
QUINN 0.783841 1.564314 2.365571
1.28470E-03 7.40184E-04 5.00275E-03
CRLB 0.785398 1.570796 2.356194
5.91823E-04 5.12821E-04 4,.,55995E-04
NSD 0.800560 1.574451 2.341074
4.07110E-03 8.08582E-04 4.22644E-03
MNSD 0.785737 1.570805 2.341074
2.82607E~-03 6.72624E~-04 2.82559E-03
TLS-ESP 0.778216 1.600983 2.368486
7.82090E-03 5.08289E-02 1.00645E-02
QUINN 0.781995 1.563569 2.365616

2.01329E-03
1.08511E-02

1.72613E-03
8.09113E-03

8.79353E-03
2.46323E-02




Table 2
o? = 0.01
w = ,257n w = .50m w = .75
Asymptotic 0.005736 0.005716 0.005712
(Cov. Prob.) (.82) (.85) (.82)
Per - Boot 0.006129 0.005764 0.005495
(Cov. Prob.) (.88) (.84) (.81)
Bootstrap-t 0.006784 0.006377 0.006062
(Cov. Prob.) (.89) (.84) (.82)
0.05
w = ,25n1 w = .50m w= .75
Asymptotic 0.012842 0.012799 0.012784
(Cov. Prob.) (.81) (.85) (.82)
Per - Boot 0.013704 0.012916 0.012348
(Cov. Prob.) (.88) (.84) (.81)
Bootstrap-t 0.015194 0.014297 0.013623
(Cov. Prob.) (.89) (.85) (.82)
0!10
w = ,251 w = .,50m w= ,75n
Asymptotic 0.040683 0.040699 0.040576
(Cov. Prob.) (.80) (.83) (.85)
Per - Boot 0.044158 0.042171 0.040593
(Cov. Prob.) (.85) (.80) (.86)
Bootstrap-t 0.048558 0.047150 0.044962
(Cov. Prob.) (.88) (.86) (.86)




